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Outline

e Recap

Another source of nominal rigidity: Fisher contracts and policy
stabilization (DR 7.1-7.2)

Fixed contracts (DR 7.3)

A step towards a proper dynamic model with nominal rigidites: Calvo
price-setting and the New Keynesian Phillips curve (DR 7.4)
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Phillips curve and policy stabilization

e Monetary policy can stabilize/stimulate real activity only if policy-makers
have information that is not available to private agents

e The basic idea is more general. When expectations influence equilibrium,
changes in policy will affect expectations and thus the statistical relations
between economic outcomes break down

e This is the Lucas critique (1976) that tells us not to mechanically
extrapolate past behavior into the future
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Empirical prediction

e The Lucas (1972) model predicts that in economies with high aggregate
demand volatility (high Vi) the real effects of a given change in
aggregate demand should be smaller (recall db/9V,,, < 0)

e Lucas (1973) tests this prediction using cross-country data

e Although there is some positive evidence, later studies show that nominal
rigidities in price setting have more explanatory power

e Perhaps we should move away from competitive behavior and assume
firms have market power in setting prices



Price setting

e For a fully fledged dynamic model, see DR 7.1 (dynamic version of the
one examined in Lecture 8). Today, we just give a primer

e The underlying structure is similar to the Lucas model (households derive
utility from consumption of a basket of goods, and do not like to work)



Modeling price setting

e The representative agent / maximizes utility

w:q—lq
v

subject to the constraint
Pi
Ci = 3\//
where C; is consumption, L; labor supply, P the aggregate price level, P;
the price of good i and Y; the quantity of good i. The production
function equals

Yi = L;

e We have monopolistic competition in the goods market. Additional
constraint: demand for good i is (ignore idiosyncratic shocks)

P\ "
Yi=|—5 Y
(%)
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Modeling price setting

o Substitute the budget constraint, the technology constraint and the demand
function into the utility function, so as to get:

1
Yi\ 7
u=(3) v~
e Maximization w.r.t. Y;:

1
U; _ LN yytty o (L) 7 vyt _ vyt =

e Rearrange:
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Modeling price setting

o Desired price at the individual level:

pi—p=(r—1)y—In <1—*>
=pu

o All households/firms charge the same amount and produce the same amount:

F-p=(r—1 +
pi—p=(—-1) _y +upu

=m-p

e Denoting ¢ =y —1:
pt=¢m+(1-¢)p (1)
where we have ignored the constant, and ¢ > 0 measures the degree of real
rigidity (inverse relationship)

e Why? Example: Higher demand induces higher production, and since the
marginal disutility from labor increases in L;, a higher wage rate is required to
obtain more labor hours. These higher costs pass into a higher price for the it
good, for ¢ relatively high. For ¢ relatively low, instead, prices display lower
reactiveness to changes in aggregate demand
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Modeling price setting

To study the effects of demand shocks we postulate that m is random
(need not to impose a Normal distribution)

If price-setters can choose p; every period, they must form expectations
on m and on how other price-setters behave

So (1) gives desired prices, p’, and actual prices set are p; = E[p}|/]

pi = E[m|I]+ (1 —¢)E[p|/]

Assume everybody behaves in the same way, so that p; = p. Thus, taking
expectations

Elp|l] = E[m|/]



Modeling price setting

e So, the equilibrium is

p = E[ml|l]
y = m—E[m|l]

e Equilibrium has the same crucial property as the Lucas model: only
unanticipated shocks to aggregate demand have real effects

e Market power does not alter the baseline insight. What's next then?

e For anticipated shocks to have real effects we need to introduce frictions
in price setting, so not all firms set prices each period

e For simplicity we assume that prices are set by some time dependent rule,
not as a response to economic conditions
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Predetermined prices: the Fischer model

e In the Fischer model each price-setter sets prices for two periods, being
able to set different prices for these periods

e For symmetry we assume % of producers set prices in odd periods, the
other half in even ones

e We assume rational expectations in price setting, i.e. prices are set using
all available information and knowing how other price setters behave

e Again, (1) should be read as giving desired prices, while actual prices are
conditional on the information available

11/38



Predetermined prices: the Fischer model

o Let's call pi prices set for period t with information available at time t — /

e We thus have the following structure for information and price setting

t—1
le—1

t+1
le+1

P%H
P§+1
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Predetermined prices: the Fischer model

. So
pe = %(ppr)
pi = <Pmr+(1—<l))%(p%+pf)
e and
pl= Eealpt] = 0Eslmi + (1= 9) (6 + 42) @)

P2 = Erslpi] = @E_o[m]+(1— 47)%(5—2[/3%] +p7) (3
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Predetermined prices: the Fischer model

e Rearrange both equations:

1-¢
Pt 1+¢Et—1[mt]+mpf
2
Pg l—l(-Ptf)Et 2[mt]+1+zEt 2 [Pt]

e Now, find E;_»p}!, recalling that E; 2E; 1m; = E;_omy:

14’2
[]‘i‘m

Etf2p1} = 11
e Take this and plug it into pf:

P% =E om;
e Thus

pl = Ee_o[me] + 12& (Ee_1[me] — Eo_a[me])
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Predetermined prices: the Fischer model

e Finally, equilibrium price level and output are

pr = Et—z[mt] + (Et—l[mt] - Et—z[mt])

¢
1+¢

= — Ei_1\ms| +
Yt my tl[ t] 1+¢

So unanticipated demand shocks have real effects, as before

(Et—l [mr] —Ei 2 [mt])

But now also anticipated shocks have real effects (information about m;
that becomes available between t — 2 and t — 1).

Why? Prices are not fully flexible in the short run
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Predetermined prices: the Fischer model

e Why a fraction 1+¢ of new information is passed into prices and
output?

1+¢ into

e Because ¢ is an inverse function of the degree of real rigidity, thus

accounting for the responsiveness of individual prices to aggregate
demand

e If prices are more responsive (i.e., a relatively high ¢) then there is less of
an effect on output, and viceversa
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Fischer model with demand shocks

e We postulate the following relationship for aggregate demand
Yo =My — pr + vt

where now m; represents policy effects on aggregate demand (e.g.
through changes in money supply) and v; represents shocks on aggregate
demand unrelated to policy
o Aggregate price log-level
1

pr = 5(19% + p?)

® As p{ — pt = ¢y: and y; = my — pr + v

i =9 (me+v) + (1= 9) 3 (o} + )

and

pi = Ecalpi] = E1[me+ v+ (1— ‘P)%(P% +p7) (4)

P2 = Erolpl] = ¢Eco[my+vi] +(1— ¢)%(Et-z[pﬂ +p7) (5)
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Fischer model with demand shocks
e Solving first for (4), this can be plugged in (5).

2
P% = f‘l’E l[mt+Vt]+1+£2
2 1
Pg = 1f¢Et—2[mt+Vt] + 1+iEt 2 [Pt]
e Now, find E;_» [p%] recalling that E;_2E¢—1 [m; + vi| = Er—o [m + v¢]:
Ei s [Pt] 1f¢Et2[ t+Vt]+1+ZZ 2

e Take this equation and plug it into p?:
P? = Eio [m: + v¢]
e Thus

2
P% = Et—2[mt + Vt] + 1_5)4) (Et—1 [mt + Vt] — Et—Z[mt + Vt])
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Fischer model with demand shocks

Finally, the equilibrium price level is

pr = Er—o[m + ve] + 1—¢|i¢ (Et—1[ms 4 v¢] — Ex—o[m; + v])

As for equilibrium output:

1
Ye=my+ vy — Et—l[mt + Vt] + m (Et—l[mt + Vt] — Et—2[mt + Vt])
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Fischer model with demand shocks
Stabilization policy

e Let v; follow a random walk (vt = v;—1 + €¢, € ~» WN (0,(72)), and
assume that monetary policy is given by the following rule

my = a1€¢-1 +ax€r—p+ -+ ap€—p+...

e This rule is general in that it uses all the information available to the
policymaker at time t (i.e., l;_1). But it is special in having only linear
terms

e Implicitly this presumes a particular form for society's preferences (we return
to this issue after finding the optimal rule)
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Fischer model with demand shocks
Stabilization policy

e We aim at solving for output under this monetary rule
e As a first step, let us re-shuffle the terms on the RHS of the output
equation:

¢ 1
= - ——F,_ ——FE;_
Ye=my+v; 1+ ¢ t—1[me + ve 116 t—2[me + v

e Recall that

my+ vy =a1€;1+ax€ 2+ +an€tp+...+vi1t+€
—_——

=mg =Vt
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Fischer model with demand shocks

Stabilization policy

e Let's work on the expectational terms:

Ei_1[m: 4 vt

Er_a[m; + vi]

Et alver+ertarer 1 taer o+ +apee—p+...]
vi—1tai€r—1 +ag€ro+ -+ an€r—n+...
Vi—1+ me

Ve — €t + my

Ei_ofvi_1 +e€t+ar€r_1 +axer_o+ - +aner—n+...]
Ei olvio+et_1+e€er+arer1+arer o+ +anern+...]
Vt—2 +ag€rp+ -+ an€t_pn+...

Vi—p  —a1€t—1 +a1€t—1 +a€r—2+ -+ an€t—n+...
~—~—
=Vi_1—€t-1 =m¢

Vi1 —€¢—1 —ai€r—1 +mt
~—~—
=Vi—€r

vi—e€r—(1+a1)er1+me
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Fischer model with demand shocks
Stabilization policy

e Therefore:

Yo = mp+ve— (Vt—€t+mt)

1+

__ b
1+¢
¢
1+¢f+1+
1-1—31€
1+(P t—1

(v —er— (14 a1)€e—1+my)

- Yt =

% (et + (1+a1)ee—1)

— Yt=€r+

e Since €; and €;_1 are uncorrelated, a policy that wants to minimize output
volatility would choose
a) — —1

e This tells us the following on society's preferences and optimal policy: if we
only dislike output volatility, then a linear policy rule is sufficient (crucial for
the next lecture)
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Stabilization policy in the Fischer model

e The optimal policy sets money (or another suitable tool) to offset
anticipated non-policy shocks in the next period

e Other coefficients are irrelevant because past changes in aggregate
demand are included in prices and thus have no real effects

e Thus, this model has persistence of shocks, but only for one period

e Taylor modifies the Fischer model by making chosen prices to be fixed,
i.e. a firm setting prices at time t for periods t and t + 1 is forced to
choose same prices for both periods

e This modification produces more persistence

24 /38



An alternative application: Fixed prices (aka the Taylor
model)

e Suppose now that individual prices are fixed for 3 periods and that
price-setting is staggered, such that 1/3 of the prices are set in period t
at the level x;, 1/3 were set in period t — 1 at the level x;_1, while a
remaining 1/3 were set in t — 2 at the level x;_». Thus, the aggregate

price level equals

1
Pt = 3 (Xt +xt—1 + xt-2)

e Suppose that the (log) money supply follows a random walk:
me = me_1 + &

e What kind of process characterizes aggregate inflation?
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An alternative application: Fixed prices

e Assuming certainty equivalence:

1
5 (pf + Et [Pt+1] + E: [Pt+2])

with p; = m; (we abstract from real rigidities, without loss of generality)
e Thus

1
3 (me + Er [mega] + E¢ [meyo])

Clearly, higher (contemporaneous and expected) money supply (m)
increases the desired price, thereby x;

Xt —
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An alternative application: Fixed prices

Derive an expression for aggregate price inflation:

T = Pt — pPt-1
1
= = (Xt +Xe—1+xt-2) — 3 (Xe—1 + Xe—2 + X¢—3)
1

= Xt = 5Xt-3

S <; (:;t + Ec [mea] + E [mt+2]>>

=Wl =W

—% (; (me—3 + Ee—3 [me—o] + E¢—3 [mf1]>>

1
= 9 (m¢ + E¢ [mega] + Er [mey2])

9 (mt—3 + Er3 [mt—z] + Er3 [mt—l])
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An alternative application: Fixed prices

Now, use the fact that m; = m;_; + €, obtaining:

(me—3+ Er—3[mi—3 + €] + Er—3 [me—o + ¢

O =

1
=y (me + Ee [me + eep1] 4+ Ee [mey1 +e042]) —

N

1
- 9 (m¢ + E¢ [me + €41 + Er [me + €141 + €440)
1
) (me3+Ee3[mi3+e o]+ E3[mi3+e2+ei])

= 3 (mt - mt—3)

(mtl + e — mt3>
——
—m:
1
= S| M2+ €&_-1+& — M3
3 A e
=m;—1

(mt3 +eote1 e — mt3)
—_————
=mi—2

1
3 (er +e—1+€-2)

Wl Wik

W=

So, inflation follows an MA(2) process
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Calvo model

e Calvo modifies the Taylor model by making price-setting stochastic

e Instead of firms knowing for sure that they are setting prices in odd or
even periods, now every period firms are able to set new prices, but only
with probability 0 < a <1

e And prices must remain fixed until the firm is able to change them again
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Calvo model

e The price level at time t is given by

pr=axt + (1 —a)pe 1 (6)

where x; is the price chosen by firms that can update prices

e Note that x; is not p; (optimal price for period t) because firms must fix
prices for, a priori, many periods (but do not know how many, exactly)
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Calvo model: solution

e Optimal x; is an average of optimal p;’s for all future periods, with
weights reflecting probability that a price chosen today is unchanged in
the future, i.e.:

Xt:[( 1-“ Z ].—OC Etpt-H]

where B = discount factor

e Let's scorporate the term p;:

— (- B ) g+ [(1— pA— )] Y F (- aYE o))
j:].
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Calvo model: solution

e Now:

x = (1= B — )] pi + (L= )1~ B )] L 1~ aVElpi.,)

j=0

=Exei1
e Subtracting p; from each side of the equation above
xx—pe = [1=PB(1—a)](pi —pt)
+B(L —a) (Eexe+1 — pr)
e Add and subtract p;—1 on the LHS of the equation above
(xt = pe—1) — (pt — pe—1) = [1 - ,3(1 - D‘)] (P;k —pt)
+B(1 — a) (Eexe1 — pe)
e From (6), the inflation rate is given by 77 = a(xz — pr—1), thus:

Us
Xt — Pt—1 = —
44
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Calvo model: solution

e Using p{ — p: = ¢y; the previous equations lead to

o
11—«

T = [1—B(1—a)] pye + PE:[e41]

e This is the new Keynesian Phillips curve

¢ Notice how now inflation depends on expected future inflation, while in
the Lucas model the relation was with expected current inflation
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Calvo model: intuition

e We know the solution to this expectational difference equation:

o
11—«

Ty =

1-B(1-a) iﬁamﬂ-]

e Inflation today reflects expected future log-output realizations in
deviation from steady state output
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Persistence puzzle

e Problem: The standard NKPC fails to capture inflation persistence. In
the simple model above the persistence of inflation derives from the
persistence of real marginal costs (inherited persistence)

e Empirical result: When lagged inflation is added to the NKPC, it
becomes strongly significant and the coefficient on expected inflation
vanishes (Fuhrer, 1997)
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Persistence puzzle

A quick look at the empirical evidence

Feid. Funds rate, to Fed. Funds 12 Qutput Gap, to Fed. Funds rate o Inflation, to Fed. Funds rate
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> - =Model
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Persistence puzzle

Alternative price-setting schemes

e A monetary policy shock has a long-lasting effect on inflation (as well as
on output and prices), which is not captured by the baseline NKPC

e From an empirical viewpoint, intrinsic inertia has been contemplated

Even if the size of the backward component of inflation (intrinsic
persistence) is small, it is there and calls for an explanation

Therefore, we need to extend the model to generate inflation persistence.
Popular specifications:

e Adaptive expectations
e Backward looking ‘rule-of-thumb’ price-setting behavior
o Partial indexation schemes



The dynamic New Keynesian Model

e A particular ‘small-scale’ DSGE model has received particular attention, and
is now widely used by academics and central bankers alike

e As in most macro models, it features an AD block and an AS block, both of
which can be derived from first principles

e AD block: the (log-linearized) consumption Euler equation (under CRRA
utility)

1 .
vt = Etyiq1 — ; (’t - Et7'ft+1)

also called ‘optimizing’ or ‘dynamic’ IS curve
e AS block: the New Keynesian Phillips Curve

e = BE:TTr1 + Kyt
e To close the model, we need a policy rule. For example:

It = ¢ 7 + ¢yt + Vi
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